Other regions of noncoding DNA provide instructions for the formation of certain kinds of RNA molecules. RNA is a chemical cousin of DNA. Examples of specialized RNA molecules produced from noncoding DNA include transfer RNAs (tRNAs) and ribosomal RNAs (rRNAs), which help assemble protein building blocks (amino acids) into a chain that forms a protein; microRNAs (miRNAs), which are short lengths of RNA that block the process of protein production; and long noncoding RNAs (lncRNAs), which are longer lengths of RNA that have diverse roles in regulating gene activity.
Some structural elements of chromosomes are also part of noncoding DNA. For example, repeated noncoding DNA sequences at the ends of chromosomes form telomeres. Telomeres protect the ends of chromosomes from being degraded during the copying of genetic material. Repetitive noncoding DNA sequences also form satellite DNA, which is a part of other structural elements. Satellite DNA is the basis of the centromere, which is the constriction point of the X-shaped chromosome pair. Satellite DNA also forms heterochromatin, which is densely packed DNA that is important for controlling gene activity and maintaining the structure of chromosomes.
Some noncoding DNA regions, called introns, are located within protein-coding genes but are removed before a protein is made. Regulatory elements, such as enhancers, can be located in introns. Other noncoding regions are found between genes and are known as intergenic regions.
The identity of regulatory elements and other functional regions in noncoding DNA is not completely understood. Researchers are working to understand the location and role of these genetic components.